Hall Ticket Number:

Code No.: 13412 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (ECE: CBCS) III-Semester Supplementary Examinations, June-2019

Networks Analysis

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2=20 \text{ Marks})$

- State and explain Kirchhoff's Laws
- 2. Obtain fundamental cut-set matrix for the network graph shown in figure

- 3. State Tellegen's theorem.
- 4. Obtain the Thevenin's equivalent circuit for the network shown in figure

- 5. Differentiate between Zero Input Response (ZIR) and Zero State Response.
- 6. How to evaluate the initial conditions of a circuit?
- 7. Define Z-parameters of the network
- 8. Draw the equivalent circuit for the h-parameters.
- 9. Check whether the given polynomial $P(S)=S^4+S^3+2S^2+4S+1$ is Hurwitz or not
- Define Bandwidth of a resonant circuit and draw the frequency response of an RLC series circuit.

Part-B (5 ×8=40 Marks)

11. a) For the electrical network shown in figure, draw its topological graph and write its incidence matrix, tie-set matrix, link current transformation equation and branch current

b) Use Source transformation to find Io in the circuit shown in figure

- 12. a) Explain the step by step procedure for obtaining the Thevenin's equivalent of a given circuit with an example. [3]
 - b) Find the value of R that receive maximum power. Determine the maximum power. [5]

[4]

The switch shown in the following circuit has been closed for a very long time. It opens [5] at t=0. Find $V_C(t)$ for t>0 using differential equation approach

Differentiate between transient and steady state analysis.

[3]

Find the transmission parameters for the network shown below 14. a)

[4]

Derive the relation between Z-parameters and h-parameters.

[4]

Realize the function $Z(S) = \frac{S(S^2+4)}{2(S^2+1)(S^2+9)}$ in Foster form-I LC network. Realize the function $Z_{RC}(S) = \frac{S^2+4S+1}{(4S^2+5S+1)}$ in Cauer –II form. 15. a)

[4]

[3]

[4]

Distinguish between mesh and Nodal analysis. 16. a)

By Super-position theorem calculate current I in the following circuit. b)

[5]

Answer any two of the following: 17.

For the circuit shown in figure, find the values of V₁ at t equal to (a) O⁻(b)O⁺

[4]

 $(c)\infty$ (d)0.2msec 206) A D V & TOOL SOME

- [4]
- equivalent Y-parameters of the combined network is the sum of Y-parameters of each individual 2-port network.

Show that when two 2-port networks N1 and N2 are connected in parallel, the

[4]

For the circuit shown in figure, determine the Q factor value at resonance and bandwidth of the circuit

